3x^2-18x+23=0

Simple and best practice solution for 3x^2-18x+23=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2-18x+23=0 equation:



3x^2-18x+23=0
a = 3; b = -18; c = +23;
Δ = b2-4ac
Δ = -182-4·3·23
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-4\sqrt{3}}{2*3}=\frac{18-4\sqrt{3}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+4\sqrt{3}}{2*3}=\frac{18+4\sqrt{3}}{6} $

See similar equations:

| 1/30=x/5 | | (3/2)n-6=22 | | 22+8/9y=-14 | | 11x+175=6x+225 | | x(120+-2x)=1512 | | A=2×y | | g(3)=240(25)^3 | | 10x+35+7x+60=180 | | 6x+216=12x+150 | | s–-152=442 | | -20-5x=-6-8x | | 8^2+3x-70=0 | | 178=49-v | | 1/3s+17=-7 | | 2z+10+7z=16z+7 | | (9k-1)(-2k+3)=0 | | 5x+9=3x+1 | | 5x+9=3x+1 | | 4x+3=2(x-1) | | k+202=847 | | 1z/3+6/3=2z/4 | | 3-7x-6=-2x-5-1x | | -5i-2=13 | | 2(a-7)-77=9 | | 2-1/8x=16+3/4x | | 9=−7x+7x​2​​ | | 7x=4x+16 | | (4-m)(8+2/3m)=0 | | 2(3x+6=-45+15 | | (y-8)^(2/5)=2 | | x/3x−5=2x+6. | | 9y+6=y |

Equations solver categories